Bundles over configuration spaces
نویسندگان
چکیده
منابع مشابه
Bundles over Quantum RealWeighted Projective Spaces
The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...
متن کاملVector Bundles over Classifying Spaces of Compact Lie Groups
The completion theorem of Atiyah and Segal [AS] says that the complex K-theory group K(BG) of the classifying space of any compact Lie group G is isomorphic to R(G)̂ : the representation ring completed with respect to its augmentation ideal. However, the group K(BG) = [BG,Z × BU ] does not directly contain information about vector bundles over the infinite dimensional complex BG itself. The purp...
متن کاملA classification of fibre bundles over 2-dimensional spaces
The classification problem for principal fibre bundles over two-dimensional CWcomplexes is considered. Using the Postnikov factorization for the base space of a universal bundle a Puppe sequence that gives an implicit solution for the classification problem is constructed. In cases, when the structure group G is path-connected or π1(G) = 0, the classification can be given in terms of cohomology...
متن کاملDifferential operators on equivariant vector bundles over symmetric spaces
Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...
متن کاملRamadanov Conjecture and Line Bundles over Compact Hermitian Symmetric Spaces
We compute the Szegö kernels of the unit circle bundles of homogeneous negative line bundles over a compact Hermitian symmetric space. We prove that their logarithmic terms vanish in all cases and, further, that the circle bundles are not diffeomorphic to the unit sphere in Cn for Grassmannian manifolds of higher ranks. In particular they provide an infinite family of smoothly bounded strictly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1983
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1983.104.47